Characterization of E2F8, a novel E2F-like cell-cycle regulated repressor of E2F-activated transcription

Nucleic Acids Res. 2005 Sep 22;33(17):5458-70. doi: 10.1093/nar/gki855. Print 2005.

Abstract

The E2F family of transcription factors are downstream effectors of the retinoblastoma protein, pRB, pathway and are essential for the timely regulation of genes necessary for cell-cycle progression. Here we describe the characterization of human and murine E2F8, a new member of the E2F family. Sequence analysis of E2F8 predicts the presence of two distinct E2F-related DNA binding domains suggesting that E2F8 and, the recently, identified E2F7 form a subgroup within the E2F family. We show that E2F transcription factors bind the E2F8 promoter in vivo and that expression of E2F8 is being induced at the G1/S transition. Purified recombinant E2F8 binds specifically to a consensus E2F-DNA-binding site indicating that E2F8, like E2F7, binds DNA without the requirement of co-factors such as DP1. E2F8 inhibits E2F-driven promoters suggesting that E2F8 is transcriptional repressor like E2F7. Ectopic expression of E2F8 in diploid human fibroblasts reduces expression of E2F-target genes and inhibits cell growth consistent with a role for repressing E2F transcriptional activity. Taken together, these data suggest that E2F8 has an important role in turning of the expression of E2F-target genes in the S-phase of the cell cycle.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Sequence
  • Animals
  • Base Sequence
  • Binding Sites
  • Cell Cycle
  • Cell Cycle Proteins / antagonists & inhibitors*
  • Cell Cycle Proteins / metabolism
  • Cell Line
  • Cell Proliferation
  • Cloning, Molecular
  • Consensus Sequence
  • DNA-Binding Proteins / antagonists & inhibitors*
  • DNA-Binding Proteins / metabolism
  • E2F Transcription Factors
  • E2F7 Transcription Factor
  • Gene Expression Regulation*
  • Humans
  • Mice
  • Molecular Sequence Data
  • Repressor Proteins / genetics
  • Repressor Proteins / metabolism
  • Repressor Proteins / physiology*
  • Transcription Factors / antagonists & inhibitors*
  • Transcription Factors / metabolism
  • Transcriptional Activation

Substances

  • Cell Cycle Proteins
  • DNA-Binding Proteins
  • E2F Transcription Factors
  • E2F7 Transcription Factor
  • E2F7 protein, human
  • E2F8 protein, human
  • E2F8 protein, mouse
  • Repressor Proteins
  • Transcription Factors