Functional neuroimaging during altered states of consciousness: how and what do we measure?

Prog Brain Res. 2005:150:25-43. doi: 10.1016/S0079-6123(05)50003-7.

Abstract

The emergence of functional neuroimaging has extended the doctrine of functional specificity of the brain beyond the primary stages of perception, language, and motor systems to high-level cognitive, personality, and affective systems. This chapter applies functional magnetic resonance imaging to another high-level realm of cognition and neurology to characterize cortical function in patients with disorders of consciousness. At first pass, this objective appears paradoxical because conventional investigations of a cognitive process require experimental manipulation. For example, to map the location of language-sensitive cortex, a language-related task is performed according to a temporal sequence that alternates the task with rest (no-task) periods. Application of this approach to the study of consciousness would require that levels of consciousness be similarly varied, this is an unlikely technique. Alternatively, another strategy is presented here where the focus is on functional brain activity elicited during various passive stimulations of patients who are minimally conscious. Comparisons between patients with altered states of consciousness due to brain injury and healthy subjects may be employed to infer readiness and potential to sustain awareness. As if a behavioral microscope, fMRI enables a view of occluded neural processes to inform medical practitioners about the health of the neurocircuity-mediating cognitive processes. An underlying point of view is that assessment of recovery potential can be enhanced by neuroimaging techniques that reveal the status of residual systems specialized for essential cognitive and volitional tasks for each patient. Thus, development of imaging techniques that assess the functional status of individual unresponsive patients is a primary goal. The structural integrity of injured brains is often compromised depending on the specific traumatic event, and, therefore, images cannot be grouped across patients, as is the standard practice for investigations of cognitive systems in healthy volunteers. This chapter addresses these challenges and discusses technique adaptations associated with passive stimulation, paradigm selection, and individual patient assessments, where there is "zero tolerance for error," and confidence in the results must meet the highest standards of care. Similar adaptations have been previously developed for the purpose of personalized planning for neurosurgical procedures by mapping the locations of essential functional systems such as language, perception, and sensory-motor functions for each individual patient. Rather than addressing the question of "how does the brain do consciousness" with these techniques, this chapter presents methods for assessment of neurocognitive health in specific patients with disorders of consciousness.

Publication types

  • Review

MeSH terms

  • Attention / physiology
  • Brain / physiology*
  • Cognition / physiology
  • Consciousness / physiology*
  • Diagnostic Imaging*
  • Humans
  • Language
  • Magnetic Resonance Imaging