The kinetics of beta-lactoglobulin (beta-LG) denaturation in pressure-treated reconstituted skim milk samples over a wide pressurization range (100-600 MPa) and at various temperatures (10-40 degrees C) was studied. Denaturation was extremely dependent on the pressure and duration of treatment. At 100 MPa, no denaturation was observed regardless of the temperature or the holding time. At higher pressures, the level of denaturation increased with an increasing holding time at a constant pressure or with increasing pressure at a constant holding time. At 200 MPa, there was only a small effect of changing the temperature at pressurization. However, at higher pressures, increasing the temperature from 10 to 40 degrees C markedly increased the rate of denaturation. The two major genetic variants of beta-LG (A and B) behaved similarly to pressure treatment, although the B variant appeared to denature slightly faster than the A variant at low pressures (< or =400 MPa). The denaturation could be described as a second-order process for both beta-LG variants. There was a marked change in pressure dependence at about 300 MPa, which resulted in markedly different activation volumes in the two pressure ranges. Evaluation of the kinetic and thermodynamic parameters suggested that there may have been a transition from an aggregation-limited reaction to an unfolding-limited reaction as the pressure was increased.