Nasal-associated lymphoid tissue (NALT) orchestrates immune responses to Ags in the upper respiratory tract. Unlike other lymphoid organs, NALT develops independently of lymphotoxin-alpha (LTalpha). However, the structure and function of NALT are impaired in Ltalpha(-/-) mice, suggesting a link between LTalpha and chemokine expression. In this study we show that the expression of CXCL13, CCL19, CCL21, and CCL20 is impaired in the NALT of Ltalpha(-/-) mice. We also show that the NALT of Cxcl13(-/-) and plt/plt mice exhibits some, but not all, of the structural and functional defects observed in the NALT of Ltalpha(-/-) mice. Like the NALT of Ltalpha(-/-) mice, the NALT in Cxcl13(-/-) mice lacks follicular dendritic cells, BP3(+) stromal cells, and ERTR7(+) lymphoreticular cells. However, unlike the NALT of Ltalpha(-/-) mice, the NALT of Cxcl13(-/-) mice has peripheral node addressin(+) high endothelial venules (HEVs). In contrast, the NALT of plt/plt mice is nearly normal, with follicular dendritic cells, BP3(+) stromal cells, ERTR7(+) lymphoreticular cells, and peripheral node addressin(+) HEVs. Functionally, germinal center formation and switching to IgA are defective in the NALT of Ltalpha(-/-) and Cxcl13(-/-) mice. In contrast, CD8 T cell responses to influenza are impaired in Ltalpha(-/-) mice and plt/plt mice. Finally, the B and T cell defects in the NALT of Ltalpha(-/-) mice lead to delayed clearance of influenza from the nasal mucosa. Thus, the B and T cell defects in the NALT of Ltalpha(-/-) mice can be attributed to the impaired expression of CXCL13 and CCL19/CCL21, respectively, whereas impaired HEV development is directly due to the loss of LTalpha.