Independent of the severity, phenotypes and clinical outcomes of myocardial infarction may vary considerably in patients, suggesting a strong genetic influence on healing and adaptive processes. Since little is known about these genetic determinants, we examined the tissue response to myocardial injury in seven inbred mouse strains, including those employed for gene targeting or transgenic overexpression. Myocardial necrosis was produced by non-ischemic, trans-diaphragmal freeze-thaw injury in strains C57BL/6, C3H/He, DBA/2, BALB/c, 129S1, FVB/n and A/J. Two days after injury, necrotic cardiomyocytes calcified in C3H/He, DBA/2, BALB/c and 129S1, a phenotype known as dystrophic cardiac calcinosis (DCC). The susceptibility to DCC of 129S1 was determined by Dyscalc1, a locus on chromosome 7, which was identified previously in C3H/He and DBA/2. DCC was also observed in C3H/He following ischemic injury by permanent coronary artery ligation, indicating that DCC was independent of the mode of injury. In contrast, strains C57BL/6, FVB and A/J were resistant to DCC, showing formation of a fibrous scar without calcification. The development of DCC was studied in detail in C3H/He and C57BL/6. In both strains, no calcium deposition and only little structural disintegration were noted in necrotic myocardium 24 h after injury upon calcium-sensitive fluorescence staining. Ultrastructural examination revealed calcified mitochondria in C3H/He that may have served later as a nidus for rapid intracellular calcification of cardiomyocytes. We concluded that the susceptibility to calcification of myocardial necrosis may be common among inbred strains and should be recognised as a strong genetic modifier of experimental myocardial injury.