Near-infrared (NIR) spectroscopy is a practical spectroscopic procedure for the detection of organic compounds in matter. It is particularly useful because of its nondestructiveness, accuracy, rapid response, and easy operation. This work assesses the applicability of NIR for the rapid identification of micotoxigenic fungi and their toxic metabolites produced in naturally and artificially contaminated products. Two hundred and eighty maize samples were collected both from naturally contaminated maize crops grown in 16 areas in north-central Italy and from ears artificially inoculated with Fusarium verticillioides. All samples were analyzed for fungi infection, ergosterol, and fumonisin B1 content. The results obtained indicated that NIR could accurately predict the incidence of kernels infected by fungi, and by F. verticillioides in particular, as well as the quantity of ergosterol and fumonisin B1 in the meal. The statistics of the calibration and of the cross-validation for mold infection and for ergosterol and fumonisin B1 contents were significant. The best predictive ability for the percentage of global fungal infection and F. verticillioides was obtained using a calibration model utilizing maize kernels (r2 = 0.75 and SECV = 7.43) and maize meals (r2 = 0.79 and SECV = 10.95), respectively. This predictive performance was confirmed by the scatter plot of measured F. verticillioides infection versus NIR-predicted values in maize kernel samples (r2 = 0.80). The NIR methodology can be applied for monitoring mold contamination in postharvest maize, in particular F. verticilliodes and fumonisin presence, to distinguish contaminated lots from clean ones, and to avoid cross-contamination with other material during storage and may become a powerful tool for monitoring the safety of the food supply.