Two satellite DNAs have been characterized in the mitotic parthenogenetic root-knot nematodes Meloidogyne javanica and M. paranaensis, agriculturally important phytoparasitic species. The satellite repeat variants cloned from M. javanica could not be resolved from those described earlier in M. arenaria [Castagnone-Sereno, P., Leroy, F., Abad, P., 2000. Cloning and characterization of an extremely conserved satellite DNA family from the root-knot nematode Meloidogyne arenaria. Genome 43, 346-353] and are therefore classified as a single satellite named MARJA. However, this satellite shows 34.3% sequence divergence in comparison with the MPA1 satellite characterized in M. paranaensis, and monomer variants of both satellites are clearly distinguished by homogenized nucleotide substitutions. Nucleotide variability analysis revealed in one segment of the satellite monomer domains of high and low variability, conserved both within and between monomer variants of the two satellites. Intersatellite conservation of these domains indicates evolution of satellite sequence under different constraints, probably due to some functional interactions. In addition, high intrasatellite homogeneity, presence of ancestral mutations in groups of MARJA monomers in both M. javanica and M. arenaria and highly homogenized divergent positions in comparison with the MPA1 indicate similar sequence dynamics in mitotic parthenogenetic taxa to that observed in amphimictic species.