Embryonal central nervous system (CNS) tumors, which comprise medulloblastoma, are the most common malignant brain tumors in children. The role of the growth factor scatter factor/hepatocyte growth factor (SF/HGF) and its tyrosine kinase receptor c-Met in these tumors has been until now completely unknown. In the present study, we show that human embryonal CNS tumor cell lines and surgical tumor specimens express SF/HGF and c-Met. Furthermore, c-Met mRNA expression levels statistically significantly correlate with poor clinical outcome. Treatment of medulloblastoma cells with SF/HGF activates c-Met and downstream signal transduction as evidenced by c-Met, mitogen-activated protein kinase, and Akt phosphorylation. SF/HGF induces tumor cell proliferation, anchorage-independent growth, and cell cycle progression beyond the G1-S checkpoint. Using dominant-negative Cdk2 and a degradation stable p27 mutant, we show that cell cycle progression induced by SF/HGF requires Cdk2 function and p27 inhibition. SF/HGF also protects medulloblastoma cells against apoptosis induced by chemotherapy. This cytoprotective effect is associated with reduction of proapoptotic cleaved poly(ADP-ribose) polymerase and cleaved caspase-3 proteins and requires phosphoinositide 3-kinase activity. SF/HGF gene transfer to medulloblastoma cells strongly enhances the in vivo growth of s.c. and intracranial tumor xenografts. SF/HGF-overexpressing medulloblastoma xenografts exhibit increased invasion and morphologic changes that resemble human large cell anaplastic medulloblastoma. This first characterization establishes SF/HGF:c-Met as a new pathway of malignancy with multifunctional effects in human embryonal CNS tumors.