The excitatory neurotransmitter glutamate has been shown to mediate such bidirectional communication between neurons and astrocytes. In the present study, we determined the role of N-methyl-D-aspartate (NMDA) receptors on glutamate-evoked Ca(2+) influx into neurons and astrocytes. Either a nonselective NMDA receptor antagonist (5R,10S)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine hydrogen maleate (MK-801) or selective NR2B subunit-containing NMDA receptor antagonists ifenprodil and (R,S)-alpha-(4-hydroxyphenyl)-beta-methyl-4-(phenylmethyl)-1-piperid inepropanol (Ro25-6981) significantly inhibited the glutamate-evoked Ca(2+) influx into neurons, but not into astrocytes. Furthermore, we investigated whether NR2B subunit-containing NMDA receptor antagonists could suppress the astrocytic activation, as detected by glial fibrillary acidic protein (GFAP; as a specific marker of astrocyte)-like immunoreactivities in mouse cortical astrocytes. Here, we demonstrated that the increases in the level of GFAP-like immunoreactivities induced by glutamate were markedly suppressed by cotreatment with ifenprodil in cortical neuron/glia cocultures, but not in purified astrocytes. These results suggest that NR2B subunit-containing NMDA receptor plays a critical role in not only glutamate-evoked Ca(2+) influx into neurons, but also glutamate-induced astrocytic activation. Thus, glutamate-mediated pathway via NR2B subunit-containing NMDA receptor may, at least in part, contribute to neuron-to-astrocyte signaling.
Copyright 2005 Wiley-Liss, Inc.