Objective: The dyslipidemia of insulin resistance, with high levels of albumin-bound fatty acids, is a strong cardiovascular disease risk. Human arterial smooth muscle cell (hASMC) matrix proteoglycans (PGs) contribute to the retention of apoB lipoproteins in the intima, a possible key step in atherogenesis. We investigated the effects of high NEFA levels on the PGs secreted by hASMCs and whether these effects might alter the PG affinity for low-density lipoprotein.
Methods and results: hASMC exposed for 72 hours to high concentrations (800 micromol/L) of linoleate (LO) or palmitate upregulated the core protein mRNAs of the major PGs, as measured by quantitative PCR. Insulin (1 nmol/L) and the PPARgamma agonist rosiglitazone (10 micromol/L) blocked these effects. In addition, high LO increased the mRNA levels of enzymes required for glycosaminoglycan (GAG) synthesis. Exposure to NEFA increased the chondroitin sulfate:heparan sulfate ratio and the negative charge of the PGs. Because of these changes, the GAGs secreted by LO-treated cells had a higher affinity for human low-density lipoprotein than GAGs from control cells. Insulin and rosiglitazone inhibited this increase in affinity.
Conclusions: The response of hASMC to NEFA could induce extracellular matrix alterations favoring apoB lipoprotein deposition and atherogenesis.