The pre-hemolytic mechanism induced by free radicals initiated from water-soluble 2,2'-azobis (2-amidinopropane) hydrochloride (AAPH) and its reversal by genistein was investigated in human erythrocytes. The time course of K+ efflux compared to the occurrence of hemolysis suggests that AAPH-induced hemolysis occurs indirectly via pore formation and band 3 oxidation as expected. However, genistein inhibited hemolysis, LDH release and membrane protein oxidation but not K+ efflux. This indicated that erythrocyte protein oxidation possibly in the hydrophobic core plays a significant role in the membrane pre-hemolytic damage. Chemiluminescence (CL) analysis carried out in non-lysed erythrocytes treated with AAPH showed a dramatic increase in CL indicating both reduced levels of antioxidants and increased membrane lipid peroxide. The V0 value was also increased up to 6 times, denoting a high degree of membrane peroxidation very early in erythrocyte membrane damage. The whole process was inhibited by genistein in a dose-dependent manner. These results indicate that the genistein inhibited both hemolysis and pre-hemolytic damage and also hindered membrane lipid peroxide formation and protein oxidation. In addition, it is suggested that pre-hemolytic damage is mediated mainly by the oxidation of both phospholipid and protein located in the deeper hydrophobic region of the membrane.