Alzheimer's disease (AD) is characterized by formation of plaques of amyloid beta peptide (Abeta). Autosomally-inherited or "familial" AD had been demonstrated only in connection with coding sequence mutations. We characterized DNA-protein interaction and expression influence of two polymorphisms that occur in the promoter (C<-->T at -3829 and T<-->C at -1023, +1 transcription start site) of the Abeta precursor protein (APP) gene. We report distinct functional differences in reporter expression and in DNA-protein interaction for variant sequences in both -3829 and -1023 polymorphic regions. The -3829T variant has reduced DNA-protein interaction and reporter expression compared to -3829C, while -1023C has greater DNA-protein interaction and reporter expression than -1023T. Our predictions for likely transcription factors for loss of function (-3829T) are ADR1, MIG1, and PuF, and for gain of function (-1023C) are E12/E47, ITF-2, and RFX2. Characterization of the activity of a regulatory polymorphism of the APP gene points towards understanding mechanisms that likely underlie the majority of AD cases and may contribute to promoter-based drug design.