Reduced mitochondrial oxidative capacity and increased mitochondrial uncoupling impair myocardial energetics in obesity

Circulation. 2005 Oct 25;112(17):2686-95. doi: 10.1161/CIRCULATIONAHA.105.554360.

Abstract

Background: Obesity is a risk factor for cardiovascular disease and is strongly associated with insulin resistance and type 2 diabetes. Recent studies in obese humans and animals demonstrated increased myocardial oxygen consumption (MVO2) and reduced cardiac efficiency (CE); however, the underlying mechanisms remain unclear. The present study was performed to determine whether mitochondrial dysfunction and uncoupling are responsible for reduced cardiac performance and efficiency in ob/ob mice.

Methods and results: Cardiac function, MVO2, mitochondrial respiration, and ATP synthesis were measured in 9-week-old ob/ob and control mouse hearts. Contractile function and MVO2 in glucose-perfused ob/ob hearts were similar to controls under basal conditions but were reduced under high workload. Perfusion of ob/ob hearts with glucose and palmitate increased MVO2 and reduced CE by 23% under basal conditions, and CE remained impaired at high workload. In glucose-perfused ob/ob hearts, mitochondrial state 3 respirations were reduced but ATP/O ratios were unchanged. In contrast, state 3 respiration rates were similar in ob/ob and control mitochondria from hearts perfused with palmitate and glucose, but ATP synthesis rates and ATP/O ratios were significantly reduced in ob/ob, which suggests increased mitochondrial uncoupling. Pyruvate dehydrogenase activity and protein levels of complexes I, III, and V were reduced in obese mice.

Conclusions: These data indicate that reduced mitochondrial oxidative capacity may contribute to cardiac dysfunction in ob/ob mice. Moreover, fatty acid but not glucose-induced mitochondrial uncoupling reduces CE in obese mice by limiting ATP production and increasing MVO2.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Adenosine Triphosphate / metabolism
  • Animals
  • Energy Metabolism*
  • Mice
  • Mice, Inbred C57BL
  • Mice, Obese
  • Mitochondria, Heart / metabolism*
  • Myocardium / metabolism*
  • Obesity / metabolism
  • Obesity / physiopathology*
  • Oxidative Phosphorylation
  • Oxygen Consumption / physiology*

Substances

  • Adenosine Triphosphate