Mutations in the alpha-actinin-4 gene (ACTN4) cause an autosomal dominant form of focal segmental glomerulosclerosis (FSGS). A mutational analysis was performed of ACTN4 in DNA from probands with a family history of FSGS as well as in individuals with nonfamilial FSGS. The possible contribution of noncoding variation in ACTN4 to the development of FSGS also was assessed. Multiple nucleotide variants were identified in coding and noncoding sequence. The segregation of nonsynonymous coding sequence variants was examined in the relevant families. Only a small number of nucleotide changes that seemed likely to be causing (or contributing to) disease were identified. Sequence changes that predicted I149del, W59R, V801M, R348Q, R837Q, and R310Q changes were identified. For studying their biologic relevance and their potential roles in the pathogenesis of FSGS, these variants were expressed as GFP-fusion proteins in cultured podocytes. F-actin binding assays also were performed. Three of these variants (W59R, I149del, and V801M) showed clear cellular mislocalization in the form of aggregates adjacent to the nucleus. Two of these mislocalized variants (W59R and I149del) also showed an increased actin-binding activity. The I149del mutation segregated with disease; W59R was found to be a de novo mutation in the proband. A total of five ACTN4 mutations that are believed to be disease causing (three reported previously and two novel) as well as a number of variants with unclear contribution to disease now have been identified. The possibility that some of these other variants increase the susceptibility to FSGS cannot be excluded. ACTN4 mutations seem to account for approximately 4% of familial FSGS.