Signal-dependent wavelets for electromyogram classification

Med Biol Eng Comput. 2005 Jul;43(4):487-92. doi: 10.1007/BF02344730.

Abstract

In the study, an efficient method to perform supervised classification of surface electromyogram (EMG) signals is proposed. The method is based on the choice of a relevant representation space and its optimisation with respect to a training set. As EMG signals are the summation of compact-support waveforms (the motor unit action potentials), a natural tool for their representation is the discrete dyadic wavelet transform. The feature space was thus built from the marginals of a discrete wavelet decomposition. The mother wavelet was designed to minimise the probability of classification error estimated on the learning set (supervised classification). As a representative example, the method was applied to simulate surface EMG signals generated by motor units with different degrees of short-term synchronisation. The proposed approach was able to distinguish surface EMG signals with degrees of synchronisation that differed by 10%, with a misclassification rate of 8%. The performance of a spectral-based classification (error rate approximately 33%) and of the classification with Daubechies wavelet (21%) was significantly poorer than with the proposed wavelet optimisation. The method can be used for a number of different application fields of surface EMG classification, as the feature space is adapted to the characteristics of the signal that discriminate between classes.

MeSH terms

  • Action Potentials / physiology
  • Electromyography / classification
  • Electromyography / methods*
  • Humans
  • Motor Neurons / physiology
  • Signal Processing, Computer-Assisted*