Males and females differ in brain activation during cognitive tasks

Neuroimage. 2006 Apr 1;30(2):529-38. doi: 10.1016/j.neuroimage.2005.09.049. Epub 2005 Nov 2.

Abstract

To examine the effect of gender on regional brain activity, we utilized functional magnetic resonance imaging (fMRI) during a motor task and three cognitive tasks; a word generation task, a spatial attention task, and a working memory task in healthy male (n = 23) and female (n = 10) volunteers. Functional data were examined for group differences both in the number of pixels activated, and the blood-oxygen-level-dependent (BOLD) magnitude during each task. Males had a significantly greater mean activation than females in the working memory task with a greater number of pixels being activated in the right superior parietal gyrus and right inferior occipital gyrus, and a greater BOLD magnitude occurring in the left inferior parietal lobe. However, despite these fMRI changes, there were no significant differences between males and females on cognitive performance of the task. In contrast, in the spatial attention task, men performed better at this task than women, but there were no significant functional differences between the two groups. In the word generation task, there were no external measures of performance, but in the functional measurements, males had a significantly greater mean activation than females, where males had a significantly greater BOLD signal magnitude in the left and right dorsolateral prefrontal cortex, the right inferior parietal lobe, and the cingulate. In neither of the motor tasks (right or left hand) did males and females perform differently. Our fMRI findings during the motor tasks were a greater mean BOLD signal magnitude in males in the right hand motor task, compared to females where males had an increased BOLD signal magnitude in the right inferior parietal gyrus and in the left inferior frontal gyrus. In conclusion, these results demonstrate differential patterns of activation in males and females during a variety of cognitive tasks, even though performance in these tasks may not vary, and also that variability in performance may not be reflected in differences in brain activation. These results suggest that in functional imaging studies in clinical populations it may be sensible to examine each sex independently until this effect is more fully understood.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Attention / physiology
  • Brain / physiology*
  • Cognition / physiology*
  • Female
  • Functional Laterality / physiology
  • Humans
  • Image Processing, Computer-Assisted
  • Magnetic Resonance Imaging
  • Male
  • Memory, Short-Term / physiology
  • Oxygen / blood
  • Psychomotor Performance / physiology
  • Sex Characteristics
  • Verbal Behavior / physiology

Substances

  • Oxygen