Measurement of CT radiation profile width using CR imaging plates

Med Phys. 2005 Sep;32(9):2881-7. doi: 10.1118/1.1954907.

Abstract

This paper describes the procedure for using a Fuji computed radiography (CR) imaging plate (IP) for the measurement of computed tomography (CT) radiation profiles. Two sources of saturation in the data from the IP, signal and quantization, were characterized to establish appropriate exposure and processing conditions for accurate measurements. The IP generated similar profiles compared to those obtained from digitized ready-pack films, except at the profile edges, where the exposure level is low. However, when IP pixel values are converted to exposure, CR and digitized film profiles are in agreement. The full width at half maximum (FWHM) of the CT radiation profile was determined from the relationship between pixel value and exposure and compared to FWHM of the digitized optical density profile from film. To estimate the effect of scattering by the cassette material, radiation profiles were acquired from IPs enclosed in a cassette or in a paper envelope. The presence of the cassette made no difference in the value determined for FWHM. With proper exposure and processing conditions, the FWHM of 5, 10, and 15 mm collimated beams were measured using IPs to be 7.1, 11.9, and 17.0 mm and using film to be 7.2, 12.2, and 16.8 mm, respectively. Our results suggest that, under appropriate conditions, the estimation of the width of the CT radiation profile using Fuji CR is comparable to the measurement from film density described in American Association of Physicists in Medicine (AAPM) Report No. 39. Although our experiment was conducted using Fuji CR, we anticipate that CR plates from other vendors could be successfully used to measure CT beam profiles because of similar empirical relationships between pixel value and exposure.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Radiation Dosage
  • Tomography, X-Ray Computed* / instrumentation