Phosphorus losses from agricultural areas in river basins: effects and uncertainties of targeted mitigation measures

J Environ Qual. 2005 Nov 7;34(6):2129-44. doi: 10.2134/jeq2004.0439. Print 2005 Nov-Dec.

Abstract

In this paper we show the quantitative and relative importance of phosphorus (P) losses from agricultural areas within European river basins and demonstrate the importance of P pathways, linking agricultural source areas to surface water at different scales. Agricultural P losses are increasingly important for the P concentration in most European rivers, lakes, and estuaries, even though the quantity of P lost from agricultural areas in European catchments varies at least one order of magnitude (<0.2 kg P ha(-1) to >2.1 kg P ha(-1)). We focus on the importance of P for the implementation of the EU Water Framework Directive and discuss the benefits, uncertainties, and side effects of the different targeted mitigation measures that can be adopted to combat P losses from agricultural areas in river basins. Experimental evidence of the effects of some of the main targeted mitigation measures hitherto implemented is demonstrated, including: (i) soil tillage changes, (ii) treatment of soils near ditches and streams with iron to reduce P transport from source areas to surface waters, (iii) establishment of buffer zones for retaining P from surface runoff, (iv) restoration of river-floodplain systems to allow natural inundation of riparian areas and deposition of P, and (v) inundation of riparian areas with tile drainage water for P retention. Furthermore, we show how river basin managers can map and analyze the extent and importance of P risk areas, exemplified by four catchments differing in size in Norway, Denmark, and the Netherlands. Finally, we discuss the factors and mechanisms that may delay and/or counteract the responses of mitigation measures for combating P losses from agricultural areas when monitored at the catchment scale.

MeSH terms

  • Agriculture / methods*
  • Disasters
  • Ecosystem
  • Environmental Monitoring / methods
  • Europe
  • Iron
  • Phosphorus / metabolism*
  • Plants
  • Rivers
  • Soil*

Substances

  • Soil
  • Phosphorus
  • Iron