The phosphorylation of extracellular signal-regulated kinases 1 and 2 (ERK1 and ERK2) in response to insulin in Rat 1 HIRc B cells and in response to nerve growth factor (NGF) in PC12 cells has been examined. ERK1 and ERK2 are phosphorylated on serine in the absence of the stimuli and additionally on tyrosine and threonine residues after exposure to NGF and insulin. NGF stimulates tyrosine phosphorylation of ERK1 more rapidly than threonine phosphorylation. Two-dimensional phosphopeptide maps of both ERK1 and ERK2 phosphorylated in intact cells treated with NGF or with insulin display the same three predominant phosphopeptides that comigrate when digests of ERK1 and ERK2 are mixed. As many as five additional phosphopeptides are detected under certain conditions. Autophosphorylated recombinant ERK2 also contains the three tryptic phosphopeptides found in ERKs labeled in intact cells. These experiments demonstrate that ERK1 and ERK2 are phosphorylated on related sites in response to two distinct extracellular signals. The data also support the possibility that autophosphorylation may be involved in the activation of the ERKs.