Purpose of review: A major goal of current clinical research in neurodegenerative diseases is to improve early detection of disease and presymptomatic detection of neuronal dysfunction. We also need better tools to assess disease progression in this group of disorders. Currently, many potential disease-modifying therapies are being developed and evaluated at the preclinical stage, and will lead to clinical trials in the near future for which biomarkers are urgently needed. This review summarizes the field of biomarker research in the major neurodegenerative diseases.
Recent findings: Many different approaches are being undertaken to identify biomarkers and include imaging, neurophysiological and cognitive testing in addition to newer technologies such as biochemical, proteomic, metabanomic and gene array profiling of tissue and biofluids from patients. Key recent findings in each of these areas are discussed.
Summary: The ideal biomarker needs to be easy to quantify and measure, reproducible, not subject to wide variation in the general population and unaffected by co-morbid factors. For evaluation of therapies the biomarker needs to change linearly with disease progression and closely correlate with established clinico-pathological parameters of the disease. It is unlikely that any one biomarker will fulfil all these characteristics, and it is likely that more than one biomarker will be needed for early diagnosis and similarly for evaluation of disease progression for therapeutic trials. For example, the combination of more detailed clinical assessments encompassing specific cognitive and neurophysiological testing, in addition to imaging, biochemical and genomic profiling, is likely to be needed.