A separation method based on electroimmobilization and sequential release of captured molecules is reported. A microfluidic electrocapture device is utilized to immobilize peptides in a microflow stream. After capture, the electric field is decreased in a stepwise manner, causing sequential release of the captured peptides according to their electrophoretic mobility. Tryptic peptides were separated and analyzed by matrix-assisted laser desorption/ionization mass spectrometry. The separation power was high enough to increase the ionization yield of several peptides not seen in the unprocessed sample. In addition to separation, simultaneous sample cleanup was demonstrated for peptides obtained by shotgun tryptic digestion of membrane protein extracts.