Influence of dissolved organic matter on nickel bioavailability and toxicity to Hyalella azteca in water-only exposures

Aquat Toxicol. 2006 Mar 10;76(3-4):203-16. doi: 10.1016/j.aquatox.2005.05.018. Epub 2005 Nov 16.

Abstract

Dissolved organic matter (DOM) is known to reduce the bioavailability of metals in aquatic systems. This study evaluated the effects of DOM from various sources (e.g., Little Bear Lake sediment, Suwannee River, peat moss) and various DOM fractions (humic acids, HA; fulvic acids, FA) on the bioavailability of nickel (Ni) to Hyalella azteca, a common freshwater benthic invertebrate. In particular, this study was conducted to evaluate the effect of surficial sediment DOM on Ni bioavailability. Short-term (48 h) acute toxicity tests with H. azteca conducted in synthetic water demonstrated that the aqueous Ni concentrations required for lethality were greater than what could be significantly complexed by environmentally relevant concentrations of dissolved organic carbon (DOC: 0.6-30.4 mg/L). At Ni concentrations sublethal to H. azteca (500 microg/L), the bioavailability of Ni was significantly reduced in the presence of representative surface water DOC concentrations regardless of DOC source or fraction. DOC fraction (i.e., FA and HA) differentially affected Ni speciation, but had little or no effect on Ni accumulation by H. azteca. Tissue Ni was found to be strongly dependent upon the Ni(2+) concentration in the exposure solutions and the Ni:DOC ratio. Overall, the concentration of DOC played a greater role than either DOC source or fraction in determining Ni speciation and hence bioavailability and toxicity to H. azteca.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amphipoda / chemistry
  • Amphipoda / drug effects*
  • Amphipoda / metabolism
  • Animals
  • Benzopyrans / adverse effects
  • Benzopyrans / chemistry
  • Benzopyrans / metabolism
  • Biological Availability
  • Carbon / analysis
  • Carbon / chemistry
  • Environment
  • Fresh Water / chemistry*
  • Geologic Sediments / chemistry*
  • Humic Substances / adverse effects
  • Lethal Dose 50
  • Nickel / analysis
  • Nickel / metabolism
  • Nickel / toxicity*
  • Toxicity Tests, Acute
  • Water Pollutants, Chemical / analysis
  • Water Pollutants, Chemical / metabolism
  • Water Pollutants, Chemical / toxicity*

Substances

  • Benzopyrans
  • Humic Substances
  • Water Pollutants, Chemical
  • Carbon
  • Nickel
  • fulvic acid