We analyzed the association between evolution of the 5' exon of tat and disease progression in an SIV/SHIV macaque model of opiate dependence and AIDS. Cloned tat sequences were obtained by RT-PCR amplification of 3 plasma viruses (recovered at different times) from 6 morphine-dependent and 2 control Indian rhesus macaques inoculated with SHIV(KU-1B) SHIV(89.6P) and SIV/17E-Fr. Approximately ten clones were sequenced for each animal per time point for use in phylogenetic analyses. We found a strong, significant inverse correlation between disease progression and tat diversity in plasma by 20 weeks post-infection. The morphine-dependent macaques developed 2 distinct disease patterns - rapid progressor (Group A) and slow progressor (Group B) - whereas control animals developed into slow progressor only (Group C). The three animals in Group A exhibited approximately 40% (P = 0.01) and approximately 50% (P = 0.028) less diversity than Group B and C animals, respectively, over the 20 weeks. Furthermore, the Group A macaques showed a prominent reemergence of the wild-type SV17E tat sequence used in the inoculum that coincided with disease progression. This suggests that the virus from the original infection represented the most pathogenic form among all animals in these cohorts throughout the first 20 weeks of infection. We were unable to support or rule out a role for immune pressure on tat evolution based on the spectrum of sequence changes in the data set. Thus, in the short duration of this study, the Tat-specific immune pressure cannot explain the different disease outcomes of the six morphine animals nor of the two controls. Our results also suggest that in vivo morphine dependence can contribute to the pathogenesis of SIV/SHIV infection and that it may do so in conjunction with the evolution of viral proteins, such as Tat.