A decrease in graft-vs.-host disease without loss of graft-vs.-leukemia reactivity after MHC-matched bone marrow transplantation by selective depletion of donor NK cells in vivo

Transplantation. 1992 Jul;54(1):104-12. doi: 10.1097/00007890-199207000-00019.

Abstract

It is thought that natural killer cells may play a role in graft-vs.-host reactions after allogeneic bone marrow transplantation, but the use of NK cell-specific reagents has been limited. In this report, an NK allele-specific monoclonal antibody, anti-NK 1.1, was used to study the impact of in vivo donor NK cell depletion on GVH disease, graft-vs.-leukemia (GVL) reactivity and donor T cell chimerism after allogeneic murine BMT. AKR/J (H-2k) recipient mice were preconditioned with suboptimal irradiation (9 Gy = LD50) and transplanted with major histocompatibility complex-matched B10.BR (H-2k) BM cells with or without added spleen cells as a source of T cells. The addition of increasing numbers of spleen cells to the BM inoculum produced GVHD of varying intensities. The beneficial effect of NK depletion on GVHD was dependent on the intensity of the GVH reaction. Donor NK cell depletion had no effect on the survival of mice with severe GVHD after MHC-matched BMT (B10.BR into AKR) or after MHC-mismatched BMT (B10.BR into DBA/2; H-2k into H-2d). However, donor NK depletion increased survival of AKR hosts given sufficient B10.BR splenic T cells to induce mild-to-moderate GVHD. Ex vivo depletion of donor CD8+ T cells also reduced GVH-associated mortality, but the use of both CD8 and NK depletion offered no improvement over either alone, suggesting an interaction between CD8+ and NK 1.1+ cells. In contrast to CD8 depletion, donor NK depletion did not compromise the rapid and complete establishment of donor T cell chimerism nor the ability of chimeras to mount an effective GVL reaction. Thus, elimination of donor NK cells provides an alternate strategy for reducing GVHD without loss of GVL reactivity following MHC-matched allogeneic BMT.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Bone Marrow Transplantation / adverse effects*
  • CD8 Antigens / analysis
  • Chimera
  • Graft vs Host Disease / prevention & control*
  • Killer Cells, Natural / physiology*
  • Leukemia, Experimental / immunology*
  • Lymphocyte Depletion*
  • Lymphoid Tissue / pathology
  • Major Histocompatibility Complex*
  • Mice
  • Mice, Inbred Strains

Substances

  • CD8 Antigens