Peritoneal dialysis is limited by morphologic changes of the peritoneal membrane. Use of peritoneal dialysis fluids (PDF) that contain glucose degradation products (GDP) generates advanced glycation end-products (AGE) within the peritoneal cavity. It is unknown whether peritoneal damage is causally related to AGE-receptor for AGE (RAGE) interaction. The effects of PDF were compared with different amounts of GDP on morphologic changes of the peritoneal membrane in 48 wild-type (WT) and 48 RAGE-deficient mice. PDF (1 ml) were instilled twice daily over a period of 12 wk. Groups with eight animals each received no manipulation (sham); sham instillation (sham i.p.); or filter-sterilized, glucose-free, conventional low GDP- or high GDP PDF. In vitro (generation of AGE fluorescence in PDF) and in vivo (immunohistochemistry for carboxymethyllysine), a GDP-dependent increase of AGE formation occurred. Inflammation and neoangiogenesis were augmented in WT mice that were treated with high GDP accompanied by upregulation of CD3+ T cells, increased NF-kappaB binding activity, increased lectin, and vascular endothelial growth factor expression. Furthermore, pronounced submesothelial fibrosis was found with increased expression of TGF-beta1. Exposure to low GDP resulted in only mild inflammation and neoangiogenesis (compared with sham i.p.) and no fibrosis in WT mice. The findings in WT contrasted with those in RAGE-deficient mice, which showed no increased inflammation (CD3+ T cells and NF-kappaB binding activity), neoangiogenesis (by lectin and vascular endothelial growth factor expression), or fibrosis (expression of TGF-beta1) after long-term exposure to GDP-containing PDF. Peritoneal damage by GDP in PDF is dependent at least in part on AGE-RAGE interaction.