To improve its aqueous solubility and stability in biological fluid, CPT was physically loaded in polymeric micelles. Polymeric micelles were composed of various poly(ethylene glycol)-poly(aspartate ester) block copolymers (PEG-P(Asp(R))). The incorporation and circulation stability of CPT micelles were evaluated by measuring the CPT in micelle using gel-permeation chromatography and by CPT concentration measurement after intravenous injection using HPLC, respectively, in terms of chemical structure of block copolymers. The stability of CPT-loaded micelles in vivo depended on the amount of benzyl esters, and length of PEG in the polymers to a greater degree than it did in vitro. A stable formulation of CPT-loaded micelles was obtained using PEG-P(Asp) with PEG of 5,000 (MW), 27 Asp units, and 57-75% benzyl esterification of Asp residue. This CPT-loaded micelles showed about a 17-fold lower blood clearance value than unstable micelles. The CPT-loaded micelles are potentially delivered to tumor sites owing to an extended circulation in the blood stream.