Signal transducer and activator of transcription 3 (STAT3) play key roles in the intracellular signaling pathways of the interleukin (IL)-6 family of cytokines, which exhibit a diverse set of cellular responses, including cell proliferation and differentiation. Dysregulated IL-6/STAT3 signaling is involved in the pathogenesis of several diseases, for example autoimmune diseases and tumors. Type I interferon (IFN) induces the expression of proapoptotic genes and has been used in the clinical treatment of several tumors. In the present study, we found that type I IFN suppressed IL-6/STAT3-mediated transcription and gene expression. Furthermore, a type I IFN-induced protein, Daxx, also suppressed STAT3-mediated transcriptional activation, while overexpression of Daxx inhibited IL-6/STAT3-mediated gene expression. Importantly, small-interfering RNA-mediated reduction of Daxx expression enhanced IL-6/leukemia inhibitory factor (LIF)-induced STAT3-dependent transcription. Co-immunoprecipitation studies revealed a physical interaction between Daxx and STAT3 in transiently transfected 293T cells. We further found that Daxx and STAT3 were co-localized in the nucleus. These results indicate that Daxx may serve as a transcriptional regulator of type I IFN-mediated suppression of the IL-6/STAT3 signaling pathway.