The Cascadia Margin is a region of active accretionary tectonics characterized by high methane flux accompanied by the formation of sedimentary gas hydrates, carbonate nodules, and carbonate pavements. Several sediment cores have been obtained from this region by the Ocean Drilling Project (ODP), and in some cases the boreholes have been sealed off, serving as sites for long-term observatories. We characterized geochemical parameters and diversity of Archaea in one such "legacy" borehole, ODP site 892b, as well as in bottom water immediately above the borehole and in two nearby sediments. The methane concentrations in the samples varied over five orders of magnitude, from approximately 25 to 35 nM in the bottom water to approximately 1.4mM in one of the sediment samples. Despite these differences, the Archaeal community in all samples was dominated by gene sequences related to the methanogenic Archaea, a finding that correlates with studies of other environments characterized by high methane flux. The archaeal phylotype richness in borehole ODP 892b was limited to two phylotypes; one specifically related to Methanosaeta spp., the other to the anaerobic methane oxidizing ANME-1 group. Although some similar groups were observed in nearby sediment and seawater samples, their archaeal phylotype richness was significantly higher than in the borehole. The possible presence of a dynamic microbial community in the Cascadia Margin sub-surface and its potential roles in methanogenesis, anaerobic oxidation of methane, and authigenic precipitation of carbonate in the Cascadia Margin are discussed.