Endothelial vascular adhesion protein-1 (VAP-1) facilitates leukocyte adhesion and infiltration. This relates partly to the function of VAP-1 as a semicarbazide-sensitive amine oxidase (SSAO). We examined the effects of VAP-1/SSAO inhibition [via LJP-1207 (N'-(2-phenyl-allyl)-hydrazine hydrochloride)] on pial venular leukocyte adhesion and infiltration (at 2-10 h of reperfusion) and neuropathology (at 72 h of reperfusion) after transient forebrain ischemia (TFI). A model associated with increased postischemic inflammation was used-i.e., diabetic ovariectomized (OVX) female rats given chronic estrogen replacement therapy (ERT). We compared rats treated, either at the onset or at 6 h of reperfusion, with saline or LJP-1207. Additional rats, rendered neutropenic 24 h before TFI, were studied. In saline-treated controls, intravascular accumulation of adherent leukocytes gradually increased, reaching 15 to 20% of the venular area, at which point neutrophil infiltration commenced (at approximately 6 h). In the rats given LJP-1207 at the onset of reperfusion, limited neutrophil adhesion ( approximately 5% maximum) and no infiltration were observed. These results generally paralleled those in neutropenic rats. In rats treated at 6 h of reperfusion, the pattern of neutrophil adhesion was similar to that of the saline-treated group up to 6 h, but further infiltration was essentially prevented. Neurologic outcomes and histopathology were similar to one another in the LJP-1207-treated and neutropenic groups and significantly improved over those in saline-treated controls. Thus, VAP-1-mediated post-TFI leukocyte adhesion/infiltration in diabetic OVX females given chronic ERT contributes substantially to neuropathology. One implication is that specifically preventing leukocyte infiltration provides a substantial measure of neuroprotection. This could explain the finding of LJP-1207 having at least a 6-h therapeutic window in this model.