In this article we describe fully stereocontrolled total syntheses of 16S-iloprost (16S-2), the most active component of the drugs Ilomedin and Ventavis, and of 16S-3-oxa-iloprost (16S-3), a close analogue of 16S-2 having the potential for a high oral activity, by a new and common route. The key steps of this route are (1) the establishment of the complete C13-C20 omega side chain of the target molecules through a stereoselective conjugate addition of the alkenylcopper derivative 9 to the bicyclic C6-C12 azoalkene 10 with formation of hydrazone 8, (2) the diastereoselective olefination of ketone 7 with the chiral phosphoryl acetate 39, and (3) the regio- and stereoselective alkylation of the allylic acetate 43 with cuprate 42. These measures allowed the 5E,15S,16S-stereoselective synthesis of 16S-2 and 16S-3, a goal which had previously not been achieved. Azoalkene 10 was obtained from the achiral bicyclic C6-C12 ketone 11 as previously described by using as key step an enantioselective deprotonation. The configuration at C16 of omega-side chain building block 9 has been installed with high stereoselectivity by the oxazolidinone method and that at C15 by a diastereoselective oxazaborolidine-catalyzed reduction of the C13-C20 ketone 23 with catecholborane. Surprisingly, a high diastereoselectivity in the reduction of 23 was only obtained by using 2 equiv of oxazaborolidine 24. Application of substoichiometric amounts of 24 resulted in irreproducible diastereoselectivities ranging from very high to nil.