Electronic structure differences in ZrO2 vs HfO2

J Phys Chem A. 2005 Dec 22;109(50):11521-5. doi: 10.1021/jp053593e.

Abstract

Although ZrO2 and HfO2 are, for the most part, quite similar chemically, subtle differences in their electronic structures appear to be responsible for differing MO2/Si (M = Zr, Hf) interface stabilities. To shed light on the electronic structure differences between ZrO2 and HfO2, we have conducted joint experimental and theoretical studies. Because molecular electron affinities are a sensitive probe of electronic structure, we have measured them by conducting photoelectron spectroscopic experiments on ZrO2(-) and HfO2(-). The adiabatic electron affinity of HfO2 was determined to be 2.14 +/- 0.03 eV, and that of ZrO2 was determined to be 1.64 +/- 0.03 eV. Concurrently, advanced electronic structure calculations were conducted to determine electron affinities, vibrational frequencies, and geometries of these systems. The calculated CCSD(T) electron affinities of HfO2 and ZrO2 were found to be 2.05 and 1.62 eV, respectively. The molecular results confirm earlier predictions from solid state calculations that HfO2 is more ionic than ZrO2. The excess electron in MO2(-) occupies an sd-type hybrid orbital localized on the M atom (M = Zr, Hf). The structural parameters of ZrO2 and HfO2 and their vibrational frequencies were found to be very similar. Upon the excess electron attachment, the M-O bond length increases by ca. 0.04 A, the OMO angle increases by 2-4 degrees, and frequencies of all vibrational modes become smaller, with the stretching modes being shifted by 30-50 cm(-1) and the bending mode by 15-25 cm(-1). Together, these studies unveil significant differences in the electronic structures of ZrO2 and HfO2 but not in their structural or vibrational characteristics.