The bending vibrational spectrum of the perdeutero isotopomer of the water trimer anion has been measured and compared with spectra calculated using the MP2, CCSD, and Becke3LYP electronic structure methods. Due to its low electron binding energy (approximately 150 meV), only the OD bending region of the IR spectrum of (D2O)3(-) is accessible experimentally, with electron ejection dominating at higher photon energies. The calculated spectrum of the isomer having three water molecules arranged in a chain agrees best with the experimental spectrum. In the chain isomer, the excess electron is bound to the terminal water monomer with two dangling OH groups. This is consistent with the electron binding mechanism established previously for the (H2O)n(-) (n = 2, 4-6) anions.