Polyvinyl chloride (PVC) tubing is an indispensable medical material for extracorporeal circulation therapy. However, di(2-ethylhexyl)phthalate (DEHP), a suspected endocrine disruptor, can be eluted from PVC, suggesting that an alternative material that does not contain DEHP is needed for clinical applications. First, we evaluated the endocrine disrupting risks of the plasticizers contained in PVC tubes by investigating their binding affinities for the human estrogen receptor alpha (ERalpha). Our results revealed that, while DEHP has some binding affinity for ERalpha, neither epoxidized soybean oil nor tris(2-ethylhexyl)trimellitate (an alternative to DEHP) has any affinity for ERalpha. Second, we evaluated the endocrine disrupting risks of a tube made of newly developed plasticizer-free (PF) materials. We confirmed the presence of DEHP and detected several unidentified substances in plasma stored within the PVC tube. This plasma's competitive binding affinity for ERalpha was significantly higher than that of control plasma (P < 0.01). In contrast, the profile of plasma stored in the PF tube was similar to that of the control, both in terms of high-performance liquid chromatography chromatograms and competitive binding capacity for ERalpha, suggesting that the PF tube is biocompatible and is useful for reducing the elution of substances capable of binding to ERalpha.