ABI1 and ABI2 encode PP2C-type protein phosphatases and are thought to negatively regulate many aspects of abscisic acid (ABA) signaling, including stomatal closure in Arabidopsis. In contrast, SRK2E/OST1/SnRK2.6 encodes an Arabidopsis SnRK2 protein kinase and acts as a positive regulator in the ABA-induced stomatal closure. SRK2E/OST1 is activated by osmotic stress as well as by ABA, but the independence of the two activation processes has not yet been determined. Additionally, interaction between SRK2E/OST1 and PP2C-type phosphatases (ABI1 and ABI2) is not understood. In the present study, we demonstrated that the abi1-1 mutation, but not the abi2-1 mutation, strongly inhibited ABA-dependent SRK2E/OST1 activation. In contrast, osmotic stress activated SRK2E/OST1 even in abi1-1 and aba2-1 plants. The C-terminal regulatory domain of SRK2E/OST1 was required for its activation by both ABA and osmotic stress in Arabidopsis. The C-terminal domain was functionally divided into Domains I and II. Domain II was required only for the ABA-dependent activation of SRK2E/OST1, whereas Domain I was responsible for the ABA-independent activation. Full-length SRK2E/OST1 completely complemented the wilty phenotype of the srk2e mutant, but SRK2E/OST1 lacking Domain II did not. Domain II interacted with the ABI1 protein in a yeast two-hybrid assay. Our results suggested that the direct interaction between SRK2E/OST1 and ABI1 through Domain II plays a critical role in the control of stomatal closure.