In an MRI hyperthermia hybrid system, T1 changes are investigated for monitoring thermal therapy at 0.2 T. The water bolus, which is needed for power transmission and cooling of the skin, limits MR image quality by signal compression and artifacts. Superparamagnetic ferrofluid in different concentration was investigated with MR relaxometry and MRI methods. We found that using ferrofluid in a low concentration of 70-90 ppm magnetite the water signal can be suppressed without susceptibility artifacts. With our method of signal suppression, a significant improvement of spatial and temporal resolution is possible. The ferrofluid is stable and allows RF heating at 100 MHz. This method of signal extinction may also be useful for other experimental setups where suppression of water is necessary.