The ability to perceive and represent time is a fundamental but complex cognitive skill that allows us to perceive and organize sequences of events and actions, and to anticipate or predict when future events will occur. It is a multidimensional construct, and a variety of methods have been used to understand timing performance in ADHD samples, which makes it difficult to integrate findings across studies. While further replication is needed, growing evidence links ADHD to problems in several aspects of temporal information processing, including duration discrimination, duration reproduction, and finger tapping. Neuroimaging studies of ADHD have also implicated cerebellar, basal ganglia, and prefrontal regions of the brain, which are believed to subserve temporal information processing. This line of research implicates more basic cognitive mechanisms than previously linked with ADHD and challenges researchers to develop and utilize innovative, multidisciplinary, scientific methods to dissect the various components of temporal information processing. Recent advances in neuroimaging, such as magnetoencephalography in collaboration with structural magnetic resonance imaging, can discriminate temporal processing at the level of a millisecond. This approach can lay the groundwork to provide a more precise understanding of neural network activity during different aspects and stages of temporal information processing in ADHD.