The springtime phenomenon, termed as the mercury depletion event (MDE), during which elemental gaseous mercury (Hg0) may be converted to a reactive form that accumulates in polar ecosystems, first noted in the Arctic, has now been observed at both poles and results in an important removal pathway for atmospheric mercury. An intensive international springtime mercury experiment was performed at Ny-Alesund, Spitsbergen, from 19 April to 13 May 2003 to study the atmospheric mercury chemistry in the Arctic environment and, in particular, the MDEs which occurred in the arctic boundary layer after polar sunrise. Automated ambient measurements of Hg0, divalent reactive gaseous mercury (RGM) and fine particulate mercury (<2.5 microm) (Hg(p)) were made at the Zeppelin Mountain Station (ZMS). During the experiment mercury concentrations in the lower atmosphere varied in synchrony with ozone levels throughout the Spring. Hg0 concentrations ranged from background levels (approximately 1.6 ng m(-3)) to undetectable values (<0.1 ng m(-3)) during the first and major MDE, while RGM data showed an opposite trend during the sampling period with concentrations increasing dramatically to a peak of 230 pg m(-3), synchronous with the depletion of Hg0. The results of a meteorological transport analysis indicate the MDEs observed at ZMS were primarily due to air masses being transported in from open water areas in the Arctic Ocean that were already depleted of Hg0 when they arrived and not due to in-situ oxidation mechanisms.