Emodin inhibits vascular endothelial growth factor-A-induced angiogenesis by blocking receptor-2 (KDR/Flk-1) phosphorylation

Int J Cancer. 2006 Jun 1;118(11):2711-20. doi: 10.1002/ijc.21641.

Abstract

Emodin (1,3,8-trihydroxy-6-methylanthraquinone), an active component in the root and rhizome of Rheum palmatum, is a tyrosine kinase inhibitor with a number of biological activities, including antitumor effects. Here, we examine the effects of emodin on vascular endothelial growth factor (VEGF)-A-induced angiogenesis, both in vitro and in vivo. In vitro, emodin dose-dependently inhibits proliferation, migration into the denuded area, invasion through a layer of Matrigel and tube formation of human umbilical vein endothelial cells (HUVECs) stimulated with VEGF-A. Emodin also inhibits basic fibroblast growth factor-induced proliferation and migration of HUVECs and VEGF-A-induced tube formation of human dermal microvascular endothelial cells. Specifically, emodin induces the cell cycle arrest of HUVECs in the G0/G1 phase by suppressing cyclin D1 and E expression and retinoblastoma protein phosphorylation, and suppresses Matrigel invasion by inhibiting the basal secretion of matrix metalloproteinase-2 and VEGF-A-stimulated urokinase plasminogen activator receptor expression. Additionally, emodin effectively inhibits phosphorylation of VEGF-A receptor-2 (KDR/Flk-1) and downstream effector molecules, including focal adhesion kinase, extracellular signal-regulated kinase 1/2, p38 mitogen-activated protein kinase, Akt and endothelial nitric oxide synthase. In vivo, emodin strongly suppresses neovessel formation in the chorioallantoic membrane of chick and VEGF-A-induced angiogenesis of the Matrigel plug in mice. Our data collectively demonstrate that emodin effectively inhibits VEGF-A-induced angiogenesis in vitro and in vivo. Moreover, inhibition of phosphorylation of KDR/Flk-1 and downstream effector molecules is a possible underlying mechanism of the anti-angiogenic activity of emodin. Based on these data, we propose that an interaction of emodin with KDR/Flk-1 may be involved in the inhibitory function of emodin toward VEGF-A-induced angiogenesis in vitro and responsible for its potent anti-angiogenic in vivo.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Biocompatible Materials
  • Cell Cycle
  • Cell Movement
  • Cell Proliferation
  • Collagen
  • Dose-Response Relationship, Drug
  • Drug Combinations
  • Emodin / pharmacology*
  • Endothelial Cells
  • Humans
  • Laminin
  • Mice
  • Neoplasm Invasiveness / physiopathology
  • Neovascularization, Pathologic / physiopathology*
  • Phosphorylation
  • Proteoglycans
  • Umbilical Cord / blood supply
  • Vascular Endothelial Growth Factor A / drug effects
  • Vascular Endothelial Growth Factor A / physiology*
  • Vascular Endothelial Growth Factor Receptor-2 / metabolism*

Substances

  • Biocompatible Materials
  • Drug Combinations
  • Laminin
  • Proteoglycans
  • Vascular Endothelial Growth Factor A
  • matrigel
  • Collagen
  • Vascular Endothelial Growth Factor Receptor-2
  • Emodin