Developmental expression and cellular localization of glucose transporter molecules during mouse preimplantation development

Development. 1992 May;115(1):305-12. doi: 10.1242/dev.115.1.305.

Abstract

Two general mechanisms mediate glucose transport, one is a sodium-coupled glucose transporter found in the apical border of intestinal and kidney epithelia, while the other is a sodium-independent transport system. Of the latter, several facilitated transporters have been identified, including GLUT1 (erythrocyte/brain), GLUT2 (liver) and GLUT4 (adipose/muscle) isoforms. In this study, we used Western-blot analysis and high resolution immunoelectron microscopy (IEM) to investigate the stage-related expression and cellular localization of GLUT1, 2 and 4. The Western blot results demonstrate that GLUT1 is detectable in the oocyte and throughout preimplantation development. GLUT2 isoforms were not detectable until the blastocyst stage, while the GLUT4 isoform was undetectable in the oocyte through blastocyst stages. The present findings confirm previous studies at the molecular level which demonstrated that mRNAs encoding the same GLUT isoforms are detectable at corresponding developmental stages. GLUT1 and GLUT2 display different cellular distributions at the blastocyst stage as shown by IEM studies. GLUT1 has a widespread distribution in both trophectoderm and inner cell mass cells, while GLUT2 is located on trophectoderm membranes facing the blastocyst cavity. This observation suggests a different functional significance for these isoforms during mouse preimplantation development.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Blastocyst / chemistry
  • Blastocyst / physiology*
  • Blastocyst / ultrastructure
  • Blotting, Western
  • Gene Expression / physiology*
  • Mice
  • Microscopy, Immunoelectron
  • Monosaccharide Transport Proteins / analysis
  • Monosaccharide Transport Proteins / genetics*
  • Oocytes / chemistry

Substances

  • Monosaccharide Transport Proteins