Scanning polarization force microscopy was used to study the topography, polarizability, and contact potential of cleaved NaCl(100) as a function of the relative humidity (RH) between < 5% and 40%. In this humidity range there are reversible changes in surface potential and polarizability, while large scale modifications in step topography and irreversible ion redistribution occur above 40% RH. In dry conditions the surface contact potential was more negative near atomic steps than over flat terraces. As humidity was increased, changes were observed in the local polarizability of the steps due to ionic solvation, and the contact potential of the terraces became more negative. At 40% RH surface-potential differences between steps and terraces could no longer be detected. These results are interpreted in terms of preferential anion solvation, initially localized near steps, and later spreading over the entire surface.