Surgical training systems using virtual reality simulation techniques offer a cost-effective alternative to traditional training methods. In this sense, techniques for interactive visualization and virtual reality surgery have been one of the very important research areas. We describe various techniques we have used in developing a virtual reality system for anatomic visualization and training arthroscopic knee surgeons. Virtual models used in our systems are constructed from the Visible Human Project and Chinese Visible Human data sets. We present our various developments in segmentation, personal-computer-based real-time volume visualization, soft tissue deformation with topological change in real-time using finite element analysis, and soft tissue cutting with tactile feedback.