DNA methylation is integral to normal development and disease processes. However, the genomic distribution of methylated sequences--the methylome--is poorly understood. We have recently developed a platform technology for rapid assessment of methylation status throughout the human genome in a high-resolution, high-throughput manner. This is achieved by coupling a methylated DNA immunoprecipitation (MeDIP) method for isolating methyl cytosine rich fragments with array-based comparative genomic hybridization (array CGH). Using a combination of whole genome tiling path BAC arrays and CpG island microarrays, DNA methylation profiles are obtained simultaneously at both genome-wide and locus-specific levels. A comparison between male and female DNA using MeDIP-array CGH revealed unexpected hypomethylation of the inactive x-chromosome in gene-poor regions. Furthermore, comparisons between cancer and noncancer cell types yielded differential methylation patterns that link genetic and epigenetic instability offering a new approach to decipher misregulation in cancer. Finally, we provide new data showing epigenomic instability in lung cancer cells with concurrent regions of genetic and epigenetic alterations harboring known oncogenes.