Effects of bile acids on biliary epithelial cell proliferation and portal fibroblast activation using rat liver slices

Lab Invest. 2006 Mar;86(3):275-85. doi: 10.1038/labinvest.3700386.

Abstract

During cholestasis, bile acids accumulate in the liver, and induce cellular alterations. Cholestasis is a major cause of liver fibrosis. We have used precision-cut liver slices (PCLS) in culture to investigate the effects of bile acids on hepatic cells. Rat PCLS were placed on an insert in a vial containing culture medium, and gently agitated on a roller platform. PCLS were treated with 100 microM taurolithocholate (TLC), taurodeoxycholate (TDC) or taurocholate (TC) for 24 or 48 h. PCLS viability was measured, and immunohistochemistry was performed with antibodies against active caspase 3, platelet-derived growth factor (PDGF) receptor-beta and ED-A fibronectin. TDC and TLC, two hydrophobic bile acids, induced hepatocyte necrosis and apoptosis, whereas TC, an hydrophilic bile acid, improved slice viability as compared with controls. Both TDC and TC induced biliary epithelial cell proliferation, together with portal fibroblast proliferation and activation, as shown by PDGF receptor-beta and ED-A fibronectin expression. TLC induced biliary epithelial cell apoptosis. Our results indicate that individual bile acids induce cell type-specific effects in a complex liver microenvironment. The fact that PCLS support biliary epithelial cell and portal fibroblast proliferation will make this model very useful for the study of the mechanisms involved in portal fibrosis.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Apoptosis / drug effects
  • Bile Ducts, Intrahepatic / drug effects*
  • Bile Ducts, Intrahepatic / pathology
  • Cell Proliferation / drug effects
  • Cholagogues and Choleretics / toxicity*
  • Epithelial Cells / drug effects*
  • Epithelial Cells / pathology
  • Fibroblasts / drug effects*
  • Fibroblasts / pathology
  • Fibronectins / metabolism
  • Image Processing, Computer-Assisted
  • Liver / drug effects*
  • Liver / metabolism
  • Liver / pathology
  • Male
  • Necrosis
  • Portal System / drug effects
  • Portal System / pathology
  • Rats
  • Rats, Wistar
  • Receptor, Platelet-Derived Growth Factor beta / metabolism
  • Taurocholic Acid / toxicity*

Substances

  • Cholagogues and Choleretics
  • Fibronectins
  • Taurocholic Acid
  • Receptor, Platelet-Derived Growth Factor beta