Continuous determination of fine particulate matter mass in the Salt Lake City Environmental Monitoring project: a comparison of real-time and conventional TEOM monitor results

J Air Waste Manag Assoc. 2005 Dec;55(12):1839-46.

Abstract

Fine particulate matter (PM2.5) mass was determined on a continuous basis at the Salt Lake City Environmental Protection Agency Environmental Monitoring for Public Awareness and Community Tracking monitoring site in Salt Lake City, UT, using three different monitoring techniques. Hourly averaged PM2.5 mass data were collected during two sampling periods (summer 2000 and winter 2002) using a real-time total ambient mass sampler (RAMS), sample equilibration system (SES)-tapered element oscillating microbalance (TEOM), and conventional TEOM monitor. This paper compares the results obtained from the various monitoring systems, which differ in their treatment of semivolatile material (SVM; particle-bound water, semivolatile ammonium nitrate, and semivolatile organic compounds). PM2.5 mass results obtained by the RAMS were consistently higher than those obtained by the SES-TEOM and conventional TEOM monitors because of the RAMS ability to measure semivolatile ammonium nitrate and semivolatile organic material but not particle-bound water. The SES-TEOM monitoring system was able to account for an average of 28% of the SVM, whereas the conventional TEOM monitor loses essentially all of the SVM from the single filter during sampling. Occasional mass readings by the various TEOM monitors that are higher than RAMS results may reflect particle-bound water, which, under some conditions, is measured by the TEOM but not the RAMS.

Publication types

  • Comparative Study
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Air Pollutants / analysis*
  • Cities
  • Dust / analysis*
  • Environmental Monitoring / instrumentation
  • Environmental Monitoring / methods*
  • Time Factors
  • Utah
  • Volatilization

Substances

  • Air Pollutants
  • Dust