Background: The platelet fibrinogen receptor, a heterodimer consisting of integrin subunits alpha(IIb) and beta(3), is required for platelet aggregation, spreading, and hemostasis. Platelet agonists such as thrombin and adenosine diphosphate (ADP) lead to the activation of alpha(IIb)beta(3), thereby enhancing its affinity and avidity for binding fibrinogen (inside-out signaling). Furthermore, fibrinogen binding to alpha(IIb)beta(3) triggers cytoskeletal changes and granule release (outside-in signaling).
Aim: Genetic approaches to characterize the molecular pathways involved in alpha(IIb)beta(3) signaling are not possible with anucleate blood platelets. Therefore, we have established an OP9 stromal cell co-culture system to generate megakaryocytes from human embryonic stem cells (hESCs).
Results: alpha(IIb)beta(3) activation, measured by soluble fibrinogen binding to hESC-derived megakaryocytes, /GPIbalpha(+) cells, is readily detectable following stimulation with known platelet agonists. Dose-response curves for peptide agonists specific for the two platelet thrombin receptors, protease-activated receptor 1 (PAR1) and PAR4, show a relative responsiveness that mirrors that of human platelets, and sub-maximal ADP responses are augmented by epinephrine. Moreover, hESC-derived megakaryocytes undergo lamellipodia formation, actin filament assembly, and vinculin localization at focal adhesions when plated on a fibrinogen-coated surface, characteristic of alpha(IIb)beta(3) outside-in signaling. Undifferentiated hESCs genetically modified by lentiviral infection can be cloned and maintained in an undifferentiated state and then differentiated into megakaryocytes capable of alpha(IIb)beta(3) activation.
Conclusion: Using hESCs, we have developed a renewable source of human megakaryocytes, and a genetically tractable system for studying megakaryocytopoiesis and alpha(IIb)beta(3) signaling in the native cellular environment.