S100P, an EF-hand calcium-binding protein, has been reported to be associated with the progression of many types of cancers. Transfection of an expression vector for S100P into a benign, nonmetastatic rat mammary cell line causes a 4- to 6-fold increase in its level in all four transformant cell clones. When the resultant transformant cell lines are introduced in turn into the mammary fat pads of syngeneic Furth-Wistar rats, there is a significant 3-fold increase in local muscle invasion and a significant induction of metastasis in 64% to 75% of tumor-bearing animals. In a group of 303 breast cancer patients followed for up to 20 years, antibodies to S100P immunocytochemically stain 161 primary tumors. Survival of patients with S100P-positive carcinomas is significantly worse by about 7-fold than for those with negatively stained carcinomas. There is also a significant association between the class level of immunocytochemical staining of the carcinoma cells and decreased patient survival. Positive staining for S100P is significantly associated with that for two other metastasis-inducing proteins, S100A4 and osteopontin. Patients with tumors that stained positively for both S100P and S100A4 have a significantly reduced survival of 1.1% over patients with either S100 protein alone. Multivariate regression analysis identifies S100P, S100A4, and osteopontin as the most significant independent indicators of death in this group of patients. These results suggest that stratification of patients into groups according to expression of multiple metastasis-inducing proteins may lead to a more accurate prediction of patient survival.