Purpose: The aim of the current study was to show if contrast-to-noise ratio (CNR) could be improved without loss of diagnostic accuracy if a phase-sensitive inversion recovery (PSIR) single-shot TrueFISP sequence is used at 3.0 T instead of 1.5 T.
Material and methods: Ten patients with myocardial infarction were examined on a 1.5 T magnetic resonance (MR) system (Avanto, Siemens Medical Systems) and at a 3.0 T MR system. Imaging delayed contrast enhancement was started 10 minutes after application of contrast material. A phase-sensitive inversion recovery (PSIR) single-shot TrueFISP sequence was used at 1.5 and 3.0 T and compared with a segmented IR turboFLASH sequence at 1.5 T, which served as the reference method. Infarct volumes and CNR of infarction and normal myocardium were compared with the reference method.
Results: The PSIR Single-Shot TrueFISP technique allows for imaging nine slices during a single breathhold without adaptation of the inversion time. The mean value of CNR between infarction and normal myocardium was 5.9 at 1.5 T and 12.2 at 3.0 T (magnitude images). The CNR mean value of the reference method was 8.4. The CNR mean value at 3.0 T was significantly (P = 0.03) higher than the mean value of the reference method. The correlation coefficients of the infarct volumes, determined with the PSIR single-shot TrueFISP technique at 1.5 T and at 3.0 T and compared with the reference method, were r = 0.96 (P = 0.001) and r = 0.99 (P = 0.0001).
Conclusion: The use of PSIR single-shot TrueFISP at 3.0 T allows for accurate detection and assessment of myocardial infarction. CNR is significantly higher at 3.0 T compared with 1.5 T. The PSIR single-shot technique at 3.0 T provides a higher CNR than the segmented reference technique at 1.5 T.