A hydrological-based model (HBV-NP) was applied to a catchment (1900 km2) in the southern part of Sweden. Careful characterization of the present load situation and the potential for improved treatment or reduced soil leaching were analyzed. Several scenarios were modeled to find strategies to reach the Swedish environmental goals of reducing anthropogenic nitrogen load by 30% and phosphorus load by 20%. It was stated that the goals could be reached by different approaches that would affect different polluters and social sectors. However, no single measure was enough by itself. Instead, a combination of measures was necessary to achieve the goals. The nitrogen goal was the most difficult to attain. In order to be cost-effective, these measures should be applied to areas contributing the most to the net loading of the sea. This strategy could reduce the costs by 70%-80% when compared with implementing the measures in the entire catchment. Integrated catchment models may thus be helpful tools for reducing costs in environmental control programs.