Alteration of trabecular architecture is a predictor of fracture risk in osteoporosis. Until now, microarchitecture analysis is difficult to evaluate in routine clinical practice for osteoporosis. Texture analysis on X-ray images has been advocated to be a suitable method to assess microarchitecture in bone diseases. The X-ray acquisition conditions have been often taken into consideration; however, the influence of anatomical conditions on texture parameters has received little interest. Because fat is a well-known problem with computed tomography and densitometry, we have designed a cadaver study to compare the influence of marrow lipids on numerous texture parameters. Twenty-one human distal radii were obtained, radiographed, and analyzed using a software that measures: heterogeneity, skeletonized parameters, run-lengths and fractal dimensions. Texture parameters were measured before, and after an extensive delipidation period lasting 3 weeks. Quality of the radiographs was improved after defatting. Delipidation had a very significant effect on measurements: afterwards defatting, the images were less blurred, and a better delineation of trabeculae and marrow cavities was obtained. This provoked an increase of parameters based on the grey level distribution but had no influence on parameters describing the reticulated honeycomb microarchitecture of the trabeculae (i.e., fractal dimension). Some parameters appeared anisotropy-sensitive, due to the different constitution and size of the trabeculae. The fat content of bone marrow induces noise that can modify some texture parameters. One should take into account the fat content of the marrow when using texture analysis to compare patients with osteoporosis due to various etiologies.