Identifying genomic regions for fine-mapping using genome scan meta-analysis (GSMA) to identify the minimum regions of maximum significance (MRMS) across populations

BMC Genet. 2005 Dec 30;6 Suppl 1(Suppl 1):S42. doi: 10.1186/1471-2156-6-S1-S42.

Abstract

In order to detect linkage of the simulated complex disease Kofendrerd Personality Disorder across studies from multiple populations, we performed a genome scan meta-analysis (GSMA). Using the 7-cM microsatellite map, nonparametric multipoint linkage analyses were performed separately on each of the four simulated populations independently to determine p-values. The genome of each population was divided into 20-cM bin regions, and each bin was rank-ordered based on the most significant linkage p-value for that population in that region. The bin ranks were then averaged across all four studies to determine the most significant 20-cM regions over all studies. Statistical significance of the averaged bin ranks was determined from a normal distribution of randomly assigned rank averages. To narrow the region of interest for fine-mapping, the meta-analysis was repeated two additional times, with each of the 20-cM bins offset by 7 cM and 13 cM, respectively, creating regions of overlap with the original method. The 6-7 cM shared regions, where the highest averaged 20-cM bins from each of the three offsets overlap, designated the minimum region of maximum significance (MRMS). Application of the GSMA-MRMS method revealed genome wide significance (p-values refer to the average rank assigned to the bin) at regions including or adjacent to all of the simulated disease loci: chromosome 1 (p < 0.0001 for 160-167 cM, including D1), chromosome 3 (p-value < 0.0000001 for 287-294 cM, including D2), chromosome 5 (p-value < 0.001 for 0-7 cM, including D3), and chromosome 9 (p-value < 0.05 for 7-14 cM, the region adjacent to D4). This GSMA analysis approach demonstrates the power of linkage meta-analysis to detect multiple genes simultaneously for a complex disorder. The MRMS method enhances this powerful tool to focus on more localized regions of linkage.

MeSH terms

  • Chromosomes, Human / genetics*
  • Genetic Linkage
  • Genetics, Population*
  • Genome, Human / genetics*
  • Genome-Wide Association Study*
  • Humans
  • Physical Chromosome Mapping*
  • Statistics, Nonparametric